Sparse Trace Norm Regularization

نویسندگان

  • Jianhui Chen
  • Jieping Ye
چکیده

We study the problem of estimating multiple predictive functions from a dictionary of basis functions in the nonparametric regression setting. Our estimation scheme assumes that each predictive function can be estimated in the form of a linear combination of the basis functions. By assuming that the coefficient matrix admits a sparse low-rank structure, we formulate the function estimation problem as a convex program regularized by the trace norm and the l1-norm simultaneously. We propose to solve the convex program using the accelerated gradient (AG) method and the alternating direction method of multipliers (ADMM) respectively; we also develop efficient algorithms to solve the key components in both AG and ADMM. In addition, we conduct theoretical analysis on the proposed function estimation scheme: we derive a key property of the optimal solution to the convex program; based on an assumption on the basis functions, we establish a performance bound of the proposed function estimation scheme (via the composite regularization). Simulation studies demonstrate the effectiveness and efficiency of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularization and the Small - Ball Method I : Sparse Recovery

when Ψ is a norm and F is convex. Our approach gives a common framework that may be used in the analysis of learning problems and regularization problems alike. In particular, it sheds some light on the role various notions of sparsity have in regularization and on their connection with the size of subdifferentials of Ψ in a neighbourhood of the true minimizer. As ‘proof of concept’ we extend t...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Algorithms for Matrix Completion by Yu Xin

We consider collaborative filtering methods for matrix completion. A typical approach is to find a low rank matrix that matches the observed ratings. However, the corresponding problem has local optima. In this thesis, we study two approaches to remedy this issue: reference vector method and trace norm regularization. The reference vector method explicitly constructs user and item features base...

متن کامل

Accelerated Training for Matrix-norm Regularization: A Boosting Approach

Sparse learning models typically combine a smooth loss with a nonsmooth penalty, such as trace norm. Although recent developments in sparse approximation have offered promising solution methods, current approaches either apply only to matrix-norm constrained problems or provide suboptimal convergence rates. In this paper, we propose a boosting method for regularized learning that guarantees acc...

متن کامل

Primal-Dual methods for sparse constrained matrix completion

We develop scalable algorithms for regular and non-negative matrix completion. In particular, we base the methods on trace-norm regularization that induces a low rank predicted matrix. The regularization problem is solved via a constraint generation method that explicitly maintains a sparse dual and the corresponding low rank primal solution. We provide a new dual block coordinate descent algor...

متن کامل

Spectral k-Support Norm Regularization

The k-support norm has successfully been applied to sparse vector prediction problems. We observe that it belongs to a wider class of norms, which we call the box-norms. Within this framework we derive an efficient algorithm to compute the proximity operator of the squared norm, improving upon the original method for the k-support norm. We extend the norms from the vector to the matrix setting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1206.0333  شماره 

صفحات  -

تاریخ انتشار 2012